Cyclic Hemiacetals with Seven-Membered Rings from an Undescribed Salacia Species from Monteverde, Costa Rica

Robert B. Bates,*,† William A. Haber, ${ }^{\ddagger}$ William N. Setzer, ${ }^{\S}$ and Chad C. Stessman ${ }^{\dagger}$
Department of Chemistry, University of Arizona, Tucson, Arizona 85721, and Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899

Received August 7, 1998

The two cyclic hemiacetals of 30-hydroxyfriedelan-3-on-28-al (1R and 1S) were found in an undescribed Salacia species from Costa Rica and characterized by spectral methods.

The cytotoxicity of an undescribed Salacia species (Hippocrateaceae), a canopy liana from M onteverde, Costa Rica, is apparently due to the presence of large amounts of tingenone, a highly oxidized friedelin derivative. ${ }^{1}$ Extracts from this plant were al so found to contain smaller amounts of friedelin and friedelin derivatives friedelan-3-on-29-al, canophyllol, and 29-hydroxyfriedelan-3-one. ${ }^{1}$ We now report the isolation and characterization of two new friedelin derivatives, 30-hydroxyfriedelan-3-on-28-al 28R-hemiacetal (1R) and 30-hydroxyfriedelan-3-on-28-al 28S-hemiacetal (1S), from this plant.

These new compounds occurred together in a silica gel chromatography fraction that was separable from the above compounds. A high-resolution El mass spectrum showed a molecular ion at $\mathrm{m} / \mathrm{z} 456.3618$, consistent with molecular formula $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}$, and fragmentation peaks for the loss of a methyl group, water, and a methyl group and water. An IR spectrum showed a carbonyl peak at $1710 \mathrm{~cm}^{-1}$ and a hydroxyl peak at $3430 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR, HM QC, and HMBC spectra showed the sample to be an equimolar mixture of $\mathbf{1 R}$ and 15, the two tautomeric hemiacetals of 30-hydroxy-friedelan-3-on-28-al. The chemical shift assignments and coupl ing constants are listed in Table 1. Most A- and B-ring atom shifts were the same in both stereoisomers.

It was readily established which peaks corresponded to $\mathbf{1 R}$ and which to $\mathbf{1 S}$ using the strong HMBC peaks that accompany $180^{\circ} \mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ dihedral angles. The anomeric effect makes the hydroxyl groups in both epimers axial, since both H-28's have strong HMBC peaks with C-30. The $\mathrm{H}-28$ that has a strong HMBC peak with $\mathrm{C}-18$ must be in $\mathbf{1 R}$, where this angle is close to 180°. This assignment is supported by the downfield shifts of $\mathrm{H}-16 \beta, \mathrm{H}-18$, and $\mathrm{H}-26$ in $\mathbf{1 R}$, in which these protons are close to the hydroxyl

[^0]Table 1. Chemical Shifts ($\delta, \mathrm{CDCl}_{3}$) and Coupling Constants (Hz , in Parentheses) for 1R and 1S

position	1R		15	
	$\delta_{\text {c }}$	$\delta_{H}{ }^{\text {a }}$	δ_{C}	$\delta_{H}{ }^{\text {a }}$
1	22.1	2.00, 1.71	22.1	2.00, 1.71
2	41.4	2.30, 2.40	41.4	2.30, 2.40
3	213.5		213.5	
4	58.1	2.25 q (6.5)	58.1	2.25 q (6.5)
5	41.7		41.7	
6	41.0	1.27, 1.75	41.0	1.27, 1.75
7	18.0	1.49, 1.33	18.0	1.49, 1.33
8	50.5	1.38	50.3	1.42
9	37.4		37.4	
10	59.5	1.56	59.5	1.56
11	34.8	1.35, 1.46	34.8	1.35, 1.46
12	28.3	1.24, 1.49	27.8	1.27, 1.44
13	39.4		39.1	
14	38.4		38.9	
15	28.0	1.30, 1.30	27.3	1.32, 1.32
16	31.5	1.05, 1.82	32.3	1.30, 1.57
17	38.9		38.4	
18	32.5	2.51 dd (10.1,6.7)	38.9	2.00
19	37.6	1.23, 1.48	33.2	1.13, 1.70
20	34.3		35.2	
21	31.0	1.27, 1.62	34.2	1.27, 1.39
22	31.5	1.27, 1.48	25.2	1.53, 2.17
23	6.8	0.881 d (6.5)	6.8	0.881 d (6.5)
24	14.5	0.722	14.5	0.722
25	18.9	0.917	18.9	0.905
26	14.6	0.971	15.2	0.845
27	15.1	1.09	14.8	1.07
28	103.5	4.44 d (3.1)	104.4	4.73 d (2.9)
29	28.6	0.803	28.7	0.827
30	72.9	$\begin{aligned} & 3.22 \mathrm{~d}(11.6, \mathrm{eq}), \\ & 3.78 \mathrm{~d}(11.6, \mathrm{ax}) \end{aligned}$	72.4	$\begin{aligned} & 3.76 \mathrm{~d}(11.6, \mathrm{ax}), \\ & 3.21 \mathrm{~d}(11.6, \mathrm{eq}) \end{aligned}$
OH		$2.43 \mathrm{~d}(3.1)^{\text {b }}$		$2.35 \mathrm{~d}(2.9)^{\text {b }}$

${ }^{\mathrm{a}} \alpha$ signal listed first. ${ }^{\mathrm{b}}$ May be reversed.
group. The Iarge $180^{\circ} \mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ HMBC peaks also permitted the assignments of protons within methylene groups as given in Table 1.
The finding of stable seven-membered cyclic hemiacetals is unusual but not unprecedented. Cyclamigenins A^{1} and C are β-amyrin derivatives with the same ring system as $\mathbf{1 R}$ and $\mathbf{1 S}{ }^{\mathbf{2}}$ but are acetals rather than hemiacetals, have $\mathrm{C}-30$ rather than $\mathrm{C}-28$ in the higher oxidation state, and are believed to be artifacts of the isolation procedure, and the open form (cyclamiretin D) ${ }^{3}$ is more stable than the hemiacetal forms in this system. $\mathbf{1 R}$ and $\mathbf{1 S}$ appear to be the first isolated seven-membered cydic hemiacetals in the triterpene series, but there are examples among terpene derivatives ${ }^{4}$ and in very simple systems. ${ }^{5} \mathbf{1 R}$ and $\mathbf{1 S}$ are presumably more stable than 30-hydroxyfriedelin-3-on-28al (the open form) because besides replacing a π bond by a
σ bond, they provide some relief of the strains generally present in the D and E rings of friedelins.

Canophyllol and/or 29-hydroxyfriedelan-3-one ${ }^{1}$ are likely biological intermediates between friedelin and hemiacetals 1R and 1S.

Experimental Section

General Experimental Procedures. MS were obtained using direct inlet on a Hewlett-Packard GC/MS system. NMR spectra were run at 500 MHz on a Bruker AM-500 spectrometer with TMS as internal standard and CDCl_{3} as solvent.

Plant Material. Salacia sp. (Hippocrateaceae), an undescribed Iiana in M onteverde, Costa Rica, with stems 15-30 m long, $2-3 \mathrm{~cm}$ in diameter when mature, usually reaching the subcanopy and often the canopy, with stem nodes often conspicuously thicker than internodes; leaves simple, opposite, with petioles $2-2.5 \mathrm{~cm}$, blades from $6 \times 15 \mathrm{~cm}$ to $11 \times 26 \mathrm{~cm}$, glabrous, thick and leathery, elliptic, margin entire, apex abruptly accuminate, base obtuse to rounded, midvein expressed above and below, the lateral veins 5-8 per side, flat above and expressed below; small, red flowers densely clustered on 3-8 cm, much-branched, axillary inflorescences; fruit a globose berry, 6-9 cm in diameter, with tough leathery skin, containing 2-6 seeds. S. petenensis, the only congener of this liana species in the Monteverde region, differs in growing as a free-standing tree reaching $15-25 \mathrm{~m}$ tall and 30 cm dbh, with leaves about half as large (to $6.5 \times 14 \mathrm{~cm}$), on windswept ridges in cloud forest at 1500-1700 m elevation (lower montane wet forest life zone). S. sp. grows in sheltered forest
on the Pacific slope just below the level of the cloud forest at 1200-1500 m elevation (premontane wet forest life zone). Flowers and fruits of the two species are very similar and will require detailed comparison to determine key character differences. Voucher specimens deposited with the Missouri Botanical Garden and the Museo Nacional de Costa Rica; collection no. Haber and Bello 8297.

Extraction and Isolation. The stem bark (2.50 kg) was collected and extracted with chloroform (4 h) to give 42.7 g extract, of which 25 g was subjected to flash chromatography on silica gel. ${ }^{1}$ The fraction containing $\mathbf{1 R}$ and $\mathbf{1 S}$ (94 mg ; equimolar mixture) came between those for canophyllol and 29-hydroxyfriedelan-3-one. ${ }^{1}$
Compounds 1R and 1S: colorless needles; mp 243-249 ${ }^{\circ} \mathrm{C}$; IR spectral data, see text; NMR spectral data, see Table 1; MS data, see text.

References and Notes

(1) Setzer, W. N.; Setzer, M. C.; Hopper, A. L.; M oriarity, D. M.; Lehrman, G. K.; Niekamp, K. L.; M orcomb, S. M.; Bates, R. B.; Stessman, C. C. Planta Med. 1998, 64, 583.
(2) Dorchai, R. O.; Rubalcava, H. E.; Thomson, J . B.; Zeeh, B. Tetrahedron 1968, 24, 5649-5654.
(3) Tschesche, R.; Striegler, H.; Felhaber, H. W. Liebigs Ann. 1966, 691, 165-171.
(4) Evans, G. B.; Grant, P. K. Tetrahedron Lett. 1997, 38, 4709-4712. Paryzek, Z.; Rychlewska, U. J. Chem. Soc., Perkin Trans. 2 1997, 2313-2318.
(5) Arnold, W.; Mohr, P. Synlett 1996, 1215-1217.

NP980345J

[^0]: * To whom correspondence should be addressed. Tel: (520) 621-6317. Fax: (520) 621-8407. E-mail: batesr@u.arizona.edu.
 † University of Arizona.
 \ddagger M onteverde de Puntarenas, Costa Rica.
 § The University of Alabama in Huntsville.

